Classification of eye diseases in fundus images using Convolutional Neural Network (CNN) method with EfficientNet architecture
-
Published: July 7, 2023
-
Page: 125-131
Abstract
This research is designed to classify eye disease conditions into three classes, namely normal, cataract, and glaucoma using a system. The system will use Convolutional Neural Network (CNN) with EfficientNet architecture. The EfficientNet that will be used is EfficientNet-B0. The dataset in this paper is obtained from Kaggle totaling 300 images. From this data, augmentation is carried out so that 3.600 images are obtained consisting of "normal" (1200 images), "cataract" (1200 images), and "glaucoma" (1200 images). This data is processed into 4 different datasets, namely the original dataset, augmentation dataset, augmentation dataset that has been preprocessed grayscale, and augmentation dataset that has been preprocessed thresholding. The best results are obtained using the Adam optimizer, learning rate 0.00001, and batch size 32, and iterations of 20 epochs. The best dataset is the augmentation dataset that has been preprocessed grayscale with an accuracy of 79.22%, precision value of 80.3%, recall value of 79.22%, F1-Score of 78.87%.
References
- Bourne R, Steinmetz J, Flaxman S, et al., Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2020. Accessed via the IAPB Vision Atlas (https://www.iapb.org/learn/vision-atlas)
- WHO. (2023, March 29). Blindness and vision impairment. Retrieved from https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
- M. J. Burton et al., “The Lancet Global Health Commission on Global Eye Health: vision beyond 2020,” Lancet Glob. Heal., vol. 9, no. 4, pp. e489–e551, 2021, doi: 10.1016/S2214-109X(20)30488-5.
- Vania Annisa Queentinela, Y. T. (2021). KlasifikasiI Penyakit Diabetic Retinopathy Pada Citra Fundus Berbasis Deep Learning. Applied Business and Engineering, 1007-1018.
- Devin D. Mackay, et al (2015). The Demise Of Direct Ophthalmoscopy. American Academy of Neurology, 150-157.
- Geza Jeremia Bu’ulölö, A. J. (2021). Identification of Cataract Eye Disease Using Convolutional Neural Network. Jurnal Teknik Informatika vol. 16 no. 4 , 375-382.
- Fani Nurona Cahya, N. H. (2021). Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Nerwork . SISTEMASI Volume 10, Nomor 3, 618-626.
- Syafiq Hilmi Abdullah, R. M. (2022). Klasifikasi Diabetic Retinopathy Berbasis Pengolahan Citra. JESCE (Journal of Electrical and System Control Engineering), 5 (2), 84-9
- Diki Hananta Firdaus, B. I. (2022). Klasifikasi Penyakit Katarak Pada Mata Menggunakan Metode CNN Berbasis Web. Jurnal Kecerdasan Buatan dan Teknologi Informasi (JKBTI), 18-26.
- Rarasmaya Indraswari, W. H. (2022). Deteksi Penyakit Mata Pada Citra Fundus Menggunakan CNN . Techno.COM, Vol. 21, No. 2, 378-389.
- Ibnu Dawan Ubaidullah, Y. N. (2022). Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma. ELKOMIKA Vol. 10 No. 3, 728 - 741.
- Wahyuni Rizky Perdani, R. M. (2022). Deep Learning untuk Klasifikasi Glaukoma dengan menggunakan Arsitektur EfficientNet . Jurnal Teknik Energi Elektrik Vol. 10 No. 2, 322 - 333.