Sentimen netizen terhadap program vaksinasi covid-19 pemerintah

Abstract

Perdebatan antara pihak yang pro dan kontra mengenai program vaksinasi COVID-19 pemerintah telah memantik kegaduhan di ruang publik siber. Tujuan penelitian ini menjelaskan sentimen netizen dalam perdebatan pro dan kontra program vaksinasi COVID-19 pemerintah, khusunya pada akun facebook Presiden Joko Widodo pada periode 1 Januari 2020 hingga 30 Juli 2021. Penelitian ini menggunakan analisis sentimen berbasis big data dengan memanfaatkan program Asigta (Analisis Komunikasi Big Data) dan Naïve Bayes Classifier untuk mengungkapkan sentimen netizen terhadap program vaksinasi COVID-19 pemerintah. Hasilnya menunjukan dari tiga kata kunci “Vaksin”, “Korona”, dan “Covid” – netizen memberikan sentiment positif terhadap program vaksinasi COVID-19 pemerintah dengan rekapitulasi reaksi positif sebesar 98, 38%, berbanding dengan reaksi negatif sebesar 1,72%. Namun demikian, penelitian memerlukan dukungan metode kualitatif berbasis big data untuk menjelaskan secara komprehensif mengenai sentimen netizen terhadap program vaksinasi COVID-19 pemerintah.

Keywords
  • Vaksinasi COVID-19 Sentiment analysis Big data Media Sosial Naïve Bayes Classifier
References
  1. Adyatama, E. (2020, July 13). Ketua Gugus Tugas: Banyak yang Menganggap Covid-19 Konspirasi. Tempo.co, diakses dari: https://nasional.tempo.co/read/1364541/ketua-gugus-tugas-banyak-yang-menganggap-covid-19-konspirasi
  2. Akbar, I. (2021). Vaksinasi COVID-19 dan Kebijakan Negara: Perspektif Ekonomi Politik. Jurnal Academia Praja, 4(1), 244–254.
  3. Arsil, F., & Mauleny, A. T. (2020). Public Participation and Implementation of the Representative Function of the Indonesian Parliament during the Enforcement of the Covid-19 Pandemic Emergency. 2nd International Conference on Universal Wellbeing, 64–70. https://www.researchgate.net/publication/355390450
  4. Asigta. (2021). Analisis Komunikasi Big Data (ASIGTA). ASIGTA. https://asigta.org/about-asigta/
  5. Bakar, D. M., Adriyanto, A., & Amalia, N. R. (2022). How The Political Trust Before, At Pandemic and Vaccinations: Provincial Case Studies In Indonesia (2019, 2020, and 2021). Jurnal Studi Pemerintah, 13(1), 1–24.
  6. Castells, M. (2015). Networks of Outrage and Hope: Social Movements in the Internet Age (2nd Edition). California: Wiley Publisher.
  7. Chiraratanasopha, B. (2021). Sentimental Analysis and Keyword Extraction from Thai Users of Facebook in COVID-19 Period. Progress in Applied Science and Technology, 11(1), 66–72. https://doi.org/10.14456/past.2021.6
  8. Dales, J., Mirza, F., & Adel, A. (2021). Sentiment analysis on USA vs. New Zealand on health and safety mandates during early stages of COVID -19 pandemic. Studies in Health Technology and Informatics, 285, 67–75. https://doi.org/10.3233/SHTI210575
  9. Gandryani, F., & Hadi, F. (2021). Pelaksanaan Vaksinasi COVID-19 di Indonesia: Hak atau Kewajiban Warga Negara. Jurnal Rechts Vinding, 10(1), 23–41. https://setkab.go.id/gallery/cegah-Covid-19-dengan-3m-
  10. Garcia, K., & Berton, L. (2021). Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Applied Soft Computing, 10(1), 1–15. https://doi.org/10.1016/j.asoc.2020.107057
  11. Habermas, J. (1993). The Structural Transformation of the Public Sphere. Cambridge: MIT Press.
  12. Ibrahim, S., Ab Rahim, N. Z., Fatihan, F. I., & Abu Bakar, N. A. (2021). COVID-19 Sentiment Analysis On Facebook Comments. International Journal of Modern Trends in Social Sciences, 4(17), 01–08. https://doi.org/10.35631/ijmtss.417001
  13. Kurniawan, D., & Sutan, A. J. (2021). Penggunaan Sosial Media dalam Menyebarkan Program Vaksinisasi Covid-19 di Indonesia. Jurnal Kebijakan Publik, 12(1), 27–34.
  14. Laurensz, B., & Sediyono, E. (2021). Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(2), 118–123.
  15. Muzykant, V. L., Muqsith, M. A., Pratomo, R. R., & Barabash, V. (2021). Fake News on COVID-19 in Indonesia. Pandemic Communication and Resilience, 363–378. https://doi.org/10.1007/978-3-030-77344-1_22
  16. Neuman, W. L., & Robson, K. (2018). Basics of Social Research: Qualitative and Quantitative Approaches. London: Pearson Canada Inc.
  17. Subekti, D., & Suranto. (2021). Using Social Media as Tools of Health Protocol Campaign in the Era of the Covid-19 Pandemic in Indonesia. International Journal of Media and Communication Research, 2(2), 12–23.
  18. Sujoko, A., Habbodin, M., & Afala, L. O. M. (2020). Media dan Dinamika Demokrasi. Malang: Kencana Prenadamedia Group.
  19. Wahyudi, G. S., & Akalili, A. (2020). Ragam Narasi “Covid-19 sebagai Konspirasi” di Portal Media YouTube Narrations of “Covid-19 as Conspiracy” in Youtube Channel. JCommsci (Journal Of Media and Communication Science), 3, 26–37.
  20. Yetkinel, Ö., & Çolak, M. (2017). The effects of transformation of public sphere with the new media in academy. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 5009–5018. https://doi.org/10.12973/eurasia.2017.00979a
  21. Yulianita, T., Utami, T. W., & al Haris, M. (2020). Analisis Sentimen dalam Penanganan COVID-19 di Indonesia Menggunakan Naïve Bayes Classifier. Prosiding Seminar Nasional VARIANS, 235–243.